The first table lists representatives of elliptic curves in form y2+a1xy+a3y=x^3+a2x2+a4x+a6 over some number field K of degree d with a nontorsion point P of canonical height h(P) satisfying dh(P)<0.01. These are comparable with the points on curves over Q given by Elkies in the sense that they use the same scaling for h(P) (for the elliptic Lehmer problem, dh(P) values should be compared).
dh(P) | K,d | h(P) | w | P | [a1,a2,a3,a4,a6] | Method |
0.0032192… | Q(√6),2 | 0.0016096… | √6 | (0,0) | [-12443w+30479, 230496005w+564597600,-7958566915120w+19494428025840,0,0] | Elkies (A,u,c)=(w-3,w-3,1) |
0.0039804… | Q(√2),2 | 0.0019902… | √2 | (0,0) | [-13w-23,49w+70,-1820w-2576,0,0] | Elkies (A,u,c)=(w+1,w-1,1) |
0.0050312… | Q(√3),2 | 0.0025156… | √3 | (0,0) | [1086w+1881,716035w+1240209,1277410855w+2212540503,0,0] | Elkies (A,u,c)=(-2w-4,w+1,1) |
0.0056482… | Q(√3),2 | 0.0028241… | √3 | (0,0) | [2856w-4944,42937344w-74369664,-746077879296w+1292244793344,0,0] | Elkies (A,u,c)=(1,2w-4,1) |
0.0056603… | Q(√5),2 | 0.0028301… | 1/2+(√5)/2 | (0,0) | [4-w,6w-18,60w-90,0,0] | Elkies (A,u,c)=(w,w-2,1) |
0.0061000… | Q(√7),2 | 0.0030500… | √7 | (0,0) | [-5922w+15669,-35749431w+94584105,-543103643331w+1436917176387,0,0] | Elkies (A,u,c)=(2w-6,1-w,1) |
0.0062374… | Q(√6),2 | 0.0031187… | √6 | (0,0) | [276w+678,48060w+117720,40956840w+100323360,0,0] | Elkies (A,u,c)=(1,w+2,1) |
0.0063291… | Q(√3),2 | 0.0031645… | √3 | (0,0) | [17298w+29961,332452269w+575824221,9670381784073w+16749592578603,0,0] | Elkies (A,u,c)=(-2w-4,-w-3,1) |
0.0066567… | Q(√2),2 | 0.0033283… | √2 | (0,0) | [4w-5,-6w,24w-48,0,0] | Elkies (A,u,c)=(w-2,-w-1,1) |
0.0068524… | Q(√5),2 | 0.0034262… | 1/2+(√5)/2 | (0,0) | [120w-205,2200w-3550,1067000-659500w,0,0] | Elkies (A,u,c)=(w-1,2-w,1) |
0.0072293… | Q(√2),2 | 0.0036146… | √2 | (0,0) | [21w-29,2715w-3840,-368940w+521760,0,0] | Elkies (A,u,c)=(w-1,1-w,1) |
0.0073153… | Q(√5),2 | 0.0036576… | 1/2+(√5)/2 | (0,0) | [-4w-1,4w-2,-12w-4,0,0] | Elkies (A,u,c)=(w-2,-w-1,1) |
0.0077126… | Q(√3),2 | 0.0038563… | √3 | (497w+860,7523w+13029) | [w,-w,1,-(1544879w+2675806),1407381720w+2437656645] | EDS |
(-(288w+498),8097w+14024) | [1,w-1,0,-(365487w+633040),140434476w+243239647] | |||||
0.0077221… | Q(√7),2 | 0.0038610… | √7 | (0,0) | [-2134w-5647,-3313113w-8765673,42656703903w+112859030277,0,0] | Elkies (A,u,c)=(-2,w+3,1) |
0.0077642… | Q(√2),2 | 0.0038821… | √2 | (0,0) | [-1084w+1533,-1217471w+1721764,-1745861055w+2469020382,0,0] | Elkies (A,u,c)=(w-2,w-2,1) |
0.0077962… | Q(√6),2 | 0.0038981… | √6 | (0,0) | [46575w+114075,2013399585w+4931801640,298790194490820w+731883516649380,0,0] | Elkies (A,u,c)=(2w+5,w+3,1) |
0.0079803… | Q(√2),2 | 0.0039901… | √2 | (0,0) | [-14w-17,38w+54,-1256w-1776,0,0] | Elkies (A,u,c)=(w-1,1,1) |
0.0082965… | Q(√-5),2 | 0.0041482… | √-5 | (0,0) | [210w-255,-32625w-14625,2559375w + 20660625, 0, 0] | Elkies (A,u,c)=(2,w-1,1) |
0.0083201… | Q(√-1),2 | 0.0041600… | √-1 | (0,0) | [22w+21,161w+73,2589w-573,0,0] | Elkies (A,u,c)=(2w-2,1-w,1) |
0.0086982… | Q(√5),2 | 0.0043491… | 1/2+(√5)/2 | (0,0) | [-10w-3,14w+8,-232w-144,0,0] | Elkies (A,u,c)=(w-2,1,1) |
0.0087607… | Q(√-3),2 | 0.0043803… | 1/2+(√-3)/2 | (0,0) | [6w+21,18w+36,648w+540,0,0] | Elkies (A,u,c)=(w-1,w,1) |
0.0088450… | Q(√7),2 | 0.0044225… | √7 | (0,0) | [-1520w+4036,-2178528w+5763936,-6182979456w+16358626176,0,0] | Elkies (A,u,c)=(w-4,1-w,1) |
0.0090467… | Q(√7),2 | 0.0045233… | √7 | (0,0) | [-1449w+3762,-3260817w+8627715,-15940631844w+42174921564,0,0] | Elkies (A,u,c)=(w,w-2,1) |
0.0090698… | Q(√3),2 | 0.0045349… | √3 | (0,0) | [144w+249,6516w+11286,1487700w+2576772,0,0] | Elkies (A,u,c)=(-2w-4,w,1) |
0.0092420… | Q(√-2),2 | 0.0046210… | √-2 | (0,0) | [12w-3,3w-66,-465w+24,0,0] | Elkies (A,u,c)=(w,-w,1) |
0.0092730… | Q(√6),2 | 0.0046365… | √6 | (0,0) | [-690w-1689,-386235w-946080,1527073155w+3740550030,0,0] | Elkies (A,u,c)=(-2,w+2,1) |
0.0092754… | Q(√3),2 | 0.0046377… | √3 | (0,0) | [93w+150,-5103w-8829,-479196w-830088,0,0] | Elkies (A,u,c)=(1,w+2,1) |
0.0094336… | Q(√-1),2 | 0.0047168… | √-1 | (0,0) | [5w,w-3,-12w-4,0,0] | Elkies (A,u,c)=(w,-w,1) |
0.0094446… | Q(√-7),2 | 0.0047223… | 1/2+(√-7)/2 | (2w-4,3w+6) | [1,-2w,0,-(w+2),5w+2] | EDS |
(-(w+3),9-3w) | [1,1-w,1-w,2w-2,9-3w] | |||||
0.0096287… | Q(√3),2 | 0.0048143… | √3 | (0,0) | [-54w+60,2484w-4212,-74520w+126360,0,0] | Elkies (A,u,c)=(1,w-1,1) |
0.0097879… | Q(√-2),2 | 0.0048558… | √-2 | (0,0) | [304w-488,-18816w+26880,15955968w-22579200,0,0] | Elkies (A,u,c)=(w+1,2-w,1) |
0.0099060… | Q(√5),2 | 0.0049530… | 1/2+(√5)/2 | (0,0) | [-35w-16,188w+106,-11910w-7360,0,0] | Elkies (A,u,c)=(w-2,w,1) |
Methods: the Elkies (A,u,c) parametrisation is as described in the page linked above; for the EDS approach, see the preprint below.
Further contributions (over any number field) would be much appreciated!
The second table lists representatives of elliptic curves in form y2+a1xy+a3y=x^3+a2x2+a4x+a6 over some quadratic ring Z[w] with a nontorsion point P of canonical height h(P) at most 0.01, as a supplement to the data given in this preprint. These examples were obtained via an approach using elliptic divisibility sequences suggested by Everest and Ward.
h(P) | w | P | [a1,a2,a3,a4,a6] |
0.0038563… | √3 | (497w+860,7523w+13029) | [w,-w,1,-(1544879w+2675806),1407381720w+2437656645] |
(-(288w+498),8097w+14024) | [1,w-1,0,-(365487w+633040),140434476w+243239647] | ||
0.0047223… | 1/2+(√-7)/2 | (2w-4,3w+6) | [1,-2w,0,-(w+2),5w+2] |
(-(w+3),9-3w) | [1,1-w,1-w,2w-2,9-3w] | ||
0.0053416… | √3 | (1,-w) | [1,w,w,-(w+5),4-w] |
(1,0) | [1,-w,w,-5,w+4] | ||
0.0054424… | 1/2+(√-7)/2 | (w-2,5-4w) | [1,3w-2,-w,7w-5,-(12w+29)] |
(-(2w+1),4w+1) | [1,1,2w-1,8-8w,10w-25] | ||
0.0058010… | 1/2+(√-7)/2 | (2,-(3w+1)) | [w,0,2w,-2,3-w] |
(2-w,2-2w) | [w-1,3w,0,w-8,2-5w] | ||
0.0060112… | 1/2+(√-7)/2 | (21,-2) | [w,1,1,-w,-w] |
(2-w,1) | [w-1,3w-2,-w,-(w+5),1-w] | ||
0.0061272… | √2 | (1,0) | [1,w,w+1,-1,-w] |
(1,-w) | [1,-w,w+1,-(w+1),0] | ||
0.0064724… | √-2 | (2w,2w+1) | [0,-w,w,2w+6,w-3] |
(-2w,1-3w) | [0,w,w,6-2w,-(w+3)] | ||
0.0069470… | √2 | (w,-1) | [w+1,-w,w,-(w+3),w+1] |
(-w,w+1) | [w+1,0,w,-3,1-w] | ||
0.0072803… | 1/2+(√-7)/2 | (0,2-w) | [1,-2w,0,7w-6,2-3w] |
(w-1,-2w) | [1,1-w,w-1,3-7w,w-11] | ||
0.0073349… | 1/2+(√-7)/2 | (-(w+3),4w+2) | [1,w+1,w-1,7w+1,w-11] |
(-3,5-4w) | [1,2w-1,1,8w-12,-(10w+17)] | ||
0.0073479… | 1/2+(√-7)/2 | (-w,w-1) | [w-1,3w,-w,w-5,1-w] |
(0,1-w) | [w,0,w-1,w+1,0] | ||
0.0074870… | 1/2+(√-3)/2 | (1,0) | [1-w,-2w,1-w,2w-1,0] |
(1,0) | [w,2w-2,w,1-2w,0] | ||
0.0074943… | √-1 | (w,1) | [1,1,,w,2,w+2] |
(w,w+1) | [w,-1,1,2-w,w-2] | ||
0.0076951… | 1/2+(√-7)/2 | (3-3w,2-2w) | [1,3w-1,1-w,3w-1,3w-9] |
(3-3w,2-2w) | [1,3w-1,1-w,3w-1,3w-9] | ||
0.0080799… | 1/2+(√5)/2 | (1,2w-1) | [1-w,w,1-w,w-2,0] |
(1,1-2w) | [w,1-w,w,-(w+1),0] | ||
0.0087764… | √3 | (0,0) | [0,w+3,w+1,2w+2,0] |
(0,0) | [0,3-w,1-w,2-2w,0] | ||
0.0087786… | √-1 | (1,-w) | [w,-(w+1),1,0,0] |
(-1,1-w) | [1,1-w,w,-w,0] | ||
0.0088447… | √2 | (1-w,1) | [1,w-1,w+1,-(2w+2),1] |
(w+1,1-w) | [1,-(w+1),w+1,w-2,1-w] | ||
0.0089008… | 1/2+(√-7)/2 | (2,-3) | [w,-2w,0,w,1] |
(2,3-w) | [w-1,2w-2,2w,3-w,3-w] | ||
0.0089933… | 1/2+(√5)/2 | (w+3,4w) | [0,w,0,-(21w+16),61w+41] |
(1-w,-w) | [1,2w,2w,2w-1,2-2w] | (2w+3,3w+4) | [0,-w,2w,-(6w+11),22w+21] |
(4-w,8-5w) | [0,2-2w,2w,5w-15,21-7w] | ||
0.0090543… | 1/2+(√-3)/2 | (2w-4,4w+4) | [0,1-2w,0,-12,36w-12] |
(-(w+3),8-4w) | [0,2-w,0,-(w+10),13-25w] | ||
0.0091282… | 1/2+(√5)/2 | (5,2-2w) | [1-w,-1,w-1,-(34w+45),158w+149] |
(5,2w) | [w,-1,-w,34w-79,307-158w] | ||
0.0091781… | √3 | (0,0) | [0,w,w,0,0] |
(0,0) | [0,-w,w,0,0] | ||
0.0093444… | √2 | (1,-1) | [w+1,-1,1,-(3w+4),2w+3] |
(1,-1) | [w+1,-(w+1),1,2w-4,3-2w] | ||
0.0097150… | √2 | (w,w) | [1,-w,w,w-2,2w+4] |
(-w,2w) | [1,w,w,-(2w+2),4-2w] | ||
0.0097217… | 1/2+(√5)/2 | (w-1,4w) | [0,1,0,-(15w+12),27w+20] |
(-w,4-5w) | [0,1,2w,15w-27,46-28w] | ||
0.0097259… | 1/2+(√5)/2 | (2w,4w) | [0,1-w,0,-(20w+16),76w+48] |
(2-2w,4-4w) | [0,w,0,20w-36,124-76w] | (-w,4w+4) | [0,1-w,0,-(11w+13),27w+22] |
(w-1,2-2w) | [1,2-2w,2w-1,2-2w,-1] |
hi Graeme,
I added a new answer to your mathoverflow question about non-torsion points on elliptic curves with small heights:
http://mathoverflow.net/questions/77365/records-for-low-height-points-on-elliptic-curves-over-number-fields/155767#155767
I have found lots more quadratic examples than you have above (214 with dh(P)<0.01), but I could not find an email address for you. Please email me, if you are still interested and I will send you the file containing all such examples that I found.
PV