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Abstract

Through use of the generalized parallel axis theorem (GPAT) and related algebraic expressions,
results on the variance of weighted collections of points can be applied to the recreation of
geometric properties of the triangle, with minimal appeal to geometric arguments.
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1 Preliminaries

1.1 Barycentric Coordinates

Much of the following computation is completed in the context of barycentric coordinates. A
reference triangle of vertices A,B,C and side lengths a, b, c assigned in the usual fashion is fixed in
the plane. A point P in the plane is then uniquely determined (up to multiplication by a scalar) as
a triple of points (P1, P2, P3) such that P is the centre of mass of the triangle ABC when weights
P1, P2 and P3 are assigned to A,B and C respectively. To simplify calculations and for ease of
comparison, it is often helpful to work with normalized coordinates, such that P1 + P2 + P3 = 1,
giving a unique representation for P . In any case, we require P1 + P2 + P3 6= 0, which of course
holds if the coordinates have been normalized.

1.2 Useful formulae and methods

For a mathematical introduction to this section, see [1]. A number of calculations were automated
through use of the Computer Algebra System Maple. Throughout, a reference triangle of sides
a, b, c is assumed. Firstly, the mean square distance, variance and the determination of the squared
distance between two arbitrary points through use of the GPAT:

> dsq:=proc(P1,P2,P3,Q1,Q2,Q3)

(P1*Q2*c^2 + P1*Q3*b^2 + P2*Q1*c^2 + P2*Q3*a^2 + P3*Q1*b^2 + P3*Q2*a^2)

/((P1+P2+P3)*(Q1+Q2+Q3));

end:

> varsig:=proc(P1,P2,P3)

dsq(P1,P2,P3,P1,P2,P3)/2;

end:

> GPATdistsq:=proc(P1,P2,P3,Q1,Q2,Q3)

dsq(P1,P2,P3,Q1,Q2,Q3)-varsig(P1,P2,P3)-varsig(Q1,Q2,Q3)

end:

The procedure dsq, given two points P = (P1, P2, P3) and Q = (Q1, Q2, Q3), returns the mean
square distance of the triangles ∆P , ∆Q, where ∆P is the reference triangle ABC with weights
P1, P2, P3 at the vertices. This is calculated as

d2(∆P ,∆Q) =
P1Q1c

2 + P1Q3b
2 + P2Q1c

2 + P2Q3a
2 + P3Q1b

2 + P3Q2a
2

(P1 + P2 + P3)(Q1 + Q2 + Q3)

The procedure varsig, given a point (P1, P2, P3), computes

σ2(∆P ) = d2(∆P ,∆P )/2
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the variance of ∆P (this identity is a corollary of the GPAT). Finally, we can use the GPAT to
recover (PQ)2, since P and Q are the centres of mass of ∆P , ∆Q respectively and hence

d2(∆P ,∆Q) = σ2(∆P ) + (PQ)2 + σ2(∆Q)

So GPATdistsq calculates

(PQ)2 = d2(∆P ,∆Q) − σ2(∆P ) − σ2(∆Q)

Given three points not all colinear, it is possible to find a circle upon which they all lie. This
task is equivalent to finding a point equidistant from all three, which will then be the centre of the
circle. Given three points P = (P1, P2, P3), Q = (Q1, Q2, Q3) and R = (R1, R2, R3), a hypothesised
common centre O = (x, y, z) will satisfy

(OP )2 − (OQ)2 = (OP )2 − (OR)2 = (OQ)2 − (OR)2 = 0

That is, three equations which suffice to determine the three unknowns x, y, z (provided P,Q,R are
not colinear). Such a calculation is entirely routine with Maple, and so we offer two procedures to
determine the centre- the second one imposes the additional restraint x+y +z = 1, that is, returns
a normalized description of O:

>commoncentre:=proc(P1,P2,P3,Q1,Q2,Q3,R1,R2,R3)

solve({GPATdistsq(P1,P2,P3,x,y,z)-GPATdistsq(Q1,Q2,Q3,x,y,z)=0,

GPATdistsq(P1,P2,P3,x,y,z)-GPATdistsq(R1,R2,R3,x,y,z)=0,

GPATdistsq(Q1,Q2,Q3,x,y,z)-GPATdistsq(R1,R2,R3,x,y,z)=0},{x,y,z});

end:

>scaledcommoncentre:=proc(P1,P2,P3,Q1,Q2,Q3,R1,R2,R3)

solve({GPATdistsq(P1,P2,P3,x,y,z)-GPATdistsq(Q1,Q2,Q3,x,y,z)=0,

GPATdistsq(P1,P2,P3,x,y,z)-GPATdistsq(R1,R2,R3,x,y,z)=0,

GPATdistsq(Q1,Q2,Q3,x,y,z)-GPATdistsq(R1,R2,R3,x,y,z)=0,

x+y+z=1},{x,y,z});

end:

Supplying this function with entirely arbitrary points returns an uninspiring response spanning
several pages, but typical input causes the vast majority of terms to cancel, as shall be demonstrated.

Further, knowing the centre and any point on the circle, we can find the square of the radius.
Whilst this is simply GPATdistsq again, it is helpful to define a procedure with a more intuitive
name for use in further calculation. Hence we define

>commonradiussq:=proc(P1,P2,P3,x,y,z)

dsq(P1,P2,P3,x,y,z)-varsig(P1,P2,P3)-varsig(x,y,z):

simplify(%);

end:
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2 Applications: Circumcentres and Circumradii

2.1 The circumcircle

R

R

R

b

a

c

A

B C

O

Figure 1: The Circumcentre [8]

A natural first choice of points to work with are the vertices A,B,C of the reference triangle
itself. Thus we will find the circumcircle, determining its centre (the circumcentre O) in barycentric
coordinates (a result not easily found by direct appeal to geometry) and verifying the circumradius
R. Normalizing, our points are A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1). Plugging directly into
commoncentre we obtain

x =
−a2(c2 + b2 − a2)z

c2(−b2 + c2 − a2)
, y =

−zb2(a2 − b2 + c2)

c2(−b2 + c2 − a2)
, z = z

Which (since these are homogeneous coordinates) suggests a more natural rendition as

(a2(b2 + c2 − a2), b2(c2 + a2 − b2), c2(a2 + b2 − c2))

Note that the procedures are robust to unnormalized inputs- taking A as (2,0,0) or C as (0,0,c)
does not alter the result. Normalizing this expression for the circumcentre, we obtain

O =
1

∑

cyc

(2a2b2 − a4)
(a2(b2 + c2 − a2), b2(c2 + a2 − b2), c2(a2 + b2 − c2)) (1)
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This denominator routinely arises in such calculations, since it is related, by Heron’s formula, to
the area of the triangle:

∑

cyc

(2a2b2 − a4) = 2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4 , expanding

= (a + b + c)(−a + b + c)(a − b + c)(a + b − c) , factoring

= 16
(a + b + c)

2

(−a + b + c)

2

(a − b + c)

2

(a + b − c)

2
= 16s(s − a)(s − b)(s − c) , for s = (a + b + c)/2 the semiperimeter

= 16∆2 , Where ∆ denotes the area of triangle ABC

The useful equivalencies are

∑

cyc

(2a2b2 − a4) = (a + b + c)(−a + b + c)(a − b + c)(a + b − c) = 16∆2 (2)

In particular, it arises when we consider the circumradius R. Using commonradiussq with argu-
ments (1, 0, 0) and (x, y, z) with the latter extracted from scaledcommoncentre we deduce

R2 =
−c2a2b2

−2a2c2 − 2a2b2 + a4 + b4 − 2c2b2 + c4

Or more cleanly

R2 =
a2b2c2

2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4
=

a2b2c2

16∆2

So we have recovered the geometric property that

R =
abc

4∆
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2.2 The Nine-point circle

b

a

c

R_N

R_N

R_N

A

B

C
D

E
F

N

Figure 2: The Nine Point Centre

We apply the Maple procedures to points D = (0, 1

2
, 1

2
), E = (1

2
, 0, 1

2
), F = (1

2
, 1

2
, 0); namely the

(normalized) midpoints of the triangle sides. This generates the barycentric coordinates for the
nine point centre which, if normalized, are as follows:

N =
1

2
∑

cyc

(2a2b2 − a4)
(2b2c2+a2c2+a2b2−b4−c4, 2a2c2+b2c2+a2b2−a4−c4, 2a2b2+a2c2+b2c2−a4−b4)

(3)

Using commonradiussq we determine RN , the radius of the nine point circle, (equivalently, the
circumradius of the medial triangle of reference triangle ABC) to satisfy

(RN )2 =
a2b2c2

4
∑

cyc

(a2b2 − a4)

i.e.
RN = R/2
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2.3 The Anticomplementary circle

In the previous section we considered the medial triangle of ABC; now we direct our attention to
the triangle for which ABC is the medial triangle. This is the Anticomplimentary triangle, having
(normalized) vertices at (−1, 1, 1), (1,−1, 1) and (1, 1,−1). We immediately expect (and obtain) a
circumradius twice that of ABC; the centre of this circle is more interesting. This turns out to be

1
∑

cyc

(2a2b2 − a4)
((a2 +c2−b2)(a2 +b2−c2), (b2 +c2−a2)(b2 +a2−c2), (a2 +c2−b2)(b2 +c2−a2) (4)

Geometrically, the centre of the Anticomplimentary circle is the orthocentre H of the reference
triangle ABC (see figure 3). Thus the above expression gives a description in barycentric coordinates
of H.

b

a

c

2R

2R

2R

A

B

C

H

Figure 3: The centre of the Anticomplementary circle is the orthocentre of ∆ABC
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2.4 The Incentral Circle

A

B

C

I

Figure 4: The Incentral circle (cevians through I)

We include this as a curiosity and to demonstrate a more intricate result that can be obtained
purely through algebraic means with the GPAT. The Incentral Triangle is the cevian triangle of
ABC with respect to the Incenter I, with vertices (0, b, c), (a, 0, c) and (a, b, 0). We generate the
common centre, which is uninteresting, and proceed to find the square of the radius which, when
factorised, is

(

b
3
−cb

2
−c

2
b+c

3+ab
2
−3 bac+ac

2
−ba

2
−ca

2
−a

3
)(

−b
3
−cb

2+c
2

b+c
3+ab

2+3 bac+ac
2+ba

2
−ca

2
−a

3
)(

−b
3
−cb

2+c
2

b+c
3
−ab

2
−3 bac−ac

2+ba
2
−ca

2+a
3
)

bac

−4(b+c)2(a+b)2(a+c)2(b+c+a)(−b+c−a)(b+c−a)(a−b+c)

Defining f(a, b, c) = a3 − ba2 + ca2 − b2a − c2a − 3bca + b3 − c3 − bc2 + b2c, this simplifies
considerably to

f(a, b, c)f(b, c, a)f(c, a, b)abc

4(b + c)2(a + b)2(a + c)2(a + b + c)(b + c − a)(a + c − b)(a + b − c)

Which we recognise as
f(a, b, c)f(b, c, a)f(c, a, b)abc

4(b + c)2(a + b)2(a + c)216∆2

Hence the radius is elegantly captured by the expression

√

abcf(a, b, c)f(b, c, a)f(c, a, b)

8∆(a + b)(a + c)(b + c)
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3 Further Applications

3.1 Determination of the Contact triangle

When the radius and centre of a circle are easily determined geometrically, it may be profitable to
use this information to reconstruct the circle or key points upon it. One such example is the contact
triangle- this has vertices at the intersection of the incircle with the reference triangle (hence, the
incircle is its circumcircle). A very easy geometric argument gives the incentral radius r via

r2 =
(b + c − a)(c + a − b)(a + b − c)

4(a + b + c)

whilst it is not too difficult to determine the barycentric coordinates of the incenter as being
I = (a, b, c). (See, for instance, [4]) Thus the vertices P,Q,R of the contact triangle will satisfy
(IP )2 = (IQ)2 = (IR)2 = r2 and, since they lie on the sides of the reference triangle, one coordinate
for each will be zero.

r

r

r

A

B

C

I

Q

P

R

Figure 5: The Contact Triangle

With access to the GPAT procedures, this turns out to be sufficient to generate the barycentric co-
ordinates of the points. We consider P = (P1, P2, P3) and compute LHS which is GPATdistsq(P1, P2, P3, a, b, c),

P1bc
2 + P1cb

2 + P2ac2 + P2ca
2 + P3ab2 + P3ba

2

(P1 + P2 + P3)(a + b + c)
−

2P1P2c
2 + 2P1P3b

2 + 2P2P3a
2

2(P1 + P2 + P3)2
−

2abc2 + 2acb2 + 2bca2

2(a + b + c)2

and RHS which is r2 or
(b + c − a)(c + a − b)(a + b − c)

4(a + b + c)
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Setting P1 to be 0 (that is, seeking the vertex on BC), we can simplify LHS − RHS to

(P2c + P3c + aP2 − aP3 − P2b − P3b)
2

4(P2 + P3)2

so to generate a normalized description we solve for this equal to 0 and P2 + P3 = 1, yielding

P = (0,
a + b − c

2a
,
a − b + c

2a
)

By an entirely similar process, we recover

Q = (
a + b − c

2b
, 0,

−a + b + c

2b
)

and

R = (
a − b + c

2c
,
−a + b + c

2c
, 0)

3.2 The Euler Line

In [3], the equation of a line joining two points P ,Q with barycentric coordinates (P1, P2, P3) and
(Q1, Q2, Q3) respectively is given as

∣

∣

∣

∣

∣

∣

∣

P1 P2 P3

Q1 Q2 Q3

t1 t2 t3

∣

∣

∣

∣

∣

∣

∣

= 0

Hence, by properties of the determinant, any point R = λP + µQ, that is with Barycentric co-
ordinates (λP1 + µQ1, λP2 + µQ2, λP3 + µQ3) will be colinear with P and Q. Using the Maple

procedures developed earlier, we calculate

d1 = GPATdistsq(P1, P2, P3, λP1 + µQ1, λP2 + µQ2, λP3 + µQ3)

d2 = GPATdistsq(Q1, Q2, Q3, λP1 + µQ1, λP2 + µQ2, λP3 + µQ3)

Then
d1

d2

=
µ2(Q1 + Q2 + Q3)

2

λ2(P1 + P2 + P3)
2

Hence, if P and Q have normalised descriptions in barycentric coordinates as (P1, P2, P3) and
(Q1, Q2, Q3) and R = (λP1 + µQ1, λP2 + µQ2, λP3 + µQ3) for positive λ, µ then

(PR)2

(RQ)2
=

µ2

λ2
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and so
PR : RQ = µ : λ

From the earlier circumcentre calculations we may now confirm results about the Euler Line. From
(1) the Circumcentre O has barycentric coordinates

1
∑

cyc

(2a2b2 − a4)
(a2(b2 + c2 − a2), b2(c2 + a2 − b2), c2(a2 + b2 − c2))

and (4) gives the Orthocentre H as

1
∑

cyc

(2a2b2 − a4)
((a2 + c2 − b2)(a2 + b2 − c2), (b2 + c2 − a2)(b2 + a2 − c2), (a2 + c2 − b2)(b2 + c2 − a2)

We can therefore construct their midpoint J as 1

2
O + 1

2
H. Considering the first component J1, we

obtain

J1 =
1

∑

cyc

(2a2b2 − a4)
(a2(b2 + c2 − a2)/2 + (a2 + c2 − b2)(a2 + b2 − c2)/2)

=
1

2
∑

cyc

(2a2b2 − a4)
(a2(b2 + c2 − a2) + a4 − b4 − c4 + 2b2c2)

=
1

2
∑

cyc

(2a2b2 − a4)
(a2b2 + a2c2 − a4 + a4 − b4 − c4 + 2b2c2)

=
1

2
∑

cyc

(2a2b2 − a4)
(2b2c2 + a2c2 + a2b2 − b4 − c4)

and, by cyclic permutation of arguments

J2 =
1

2
∑

cyc

(2a2b2 − a4)
(2a2c2 + b2c2 + a2b2 − a4 − c4)

J3 =
1

2
∑

cyc

(2a2b2 − a4)
(2a2b2 + a2c2 + b2c2 − a4 − b4)

We recognise J from (3), the position of the Nine-point centre. That is, we have confirmed that N
is a linear combination of O and H, and hence O,N,H are colinear with ON=NH, i.e., N is the
midpoint of OH.
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The centroid G is easily determined to have Barycentric coordinates (1, 1, 1) (see, for instance,
[4]) and so we may attempt to recover the result that OG : GH = 1 : 2; The previous analysis
suggests we should recover G as the point R = O + 1

2
H. Considering as before the first component

we get

R1 =
1

∑

cyc

(2a2b2 − a4)
(a2(b2 + c2 − a2) + (a2 + c2 − b2)(a2 + b2 − c2)/2)

=
1

∑

cyc

(2a2b2 − a4)
(a2b2 + a2c2 −

a4

2
−

b4

2
−

c4

2
+ b2c2)

=
1

∑

cyc

(2a2b2 − a4)
(
1

2
(a + b + c)(b + c − a)(a + c − b)(a + b − c))

=
1

∑

cyc

(2a2b2 − a4)
(
1

2

∑

cyc

(2a2b2 − a4) from (2)

=
1

2

Again, cyclic permutation of the arguments recovers R2 and R3, and so

R = O +
1

2
H = (

1

2
,
1

2
,
1

2
)

Which, when normalised, gives the Centroid G = (1

3
, 1

3
, 1

3
) as desired. Since this point was obtained

by a linear combination of O and H, it too is necessarily colinear with them.

We have obtained the results

O,G,N,H are colinear
ON : NH = 1 : 1
OG : GH = 1 : 2
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4 Constraints on points

In keeping with [2], we turn our attention to constraints on the relative positions of triangle
centres within the context of the Brocard disc (the disc on diameter OS where S is the Symmedian
point). Experimentation with the Cinderella [8] dynamic geometry package gives rise to some
conjectures on non-equilateral, non-degenerate triangles.

Parry Circle

Brocard Circle

O SymS S’

I

G

M

Ge

Figure 6: The Brocard circle and points of interest Circumcentre O, Symmedian point Sym, Iso-

dynamic Points S and S′, Centroid G, Mittenpunkt M , Incenter I, Gergonne Point Ge.

4.1 The Mittenpunkt

Conjectures:

1. The Mittenpunkt is constrained to the Brocard disc (grey in Fig. 6)

2. The Mittenpunkt is constrained to the disc on diameter OG (red in Fig. 6)

3. The Mittenpunkt cannot lie in the Parry circle (purple in Fig. 6)

Working with the usual Maple procedures, a computer proof of conjecture 2 can be established
as follows. Consider the midpoint M ′ of diameter OG. By the methods discussed in section 3.2
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this will have coordinates

M ′

1 =
(4a4 + b4 + c4 − 2b2c2 − 5a2b2 − 5a2c2

6(a4 + b4 + c4 − 2a2b2 − 2b2c2 − 2c2a2)

M ′

2 =
4b4 + a4 + c4 − 2a2c2 − 5a2b2 − 5b2c2

6(a4 + b4 + c4 − 2a2b2 − 2b2c2 − 2c2a2)

M ′

3 =
4c4 + a4 + b4 − 2a2b2 − 5a2c2 − 5b2c2

6(a4 + b4 + c4 − 2a2b2 − 2b2c2 − 2c2a2)

We can therefore determine d1 := (OM ′)2, the square of the radius of the disc, to be

a6 + b6 + c6 + 3a2b2c2 −
∑

sym

(a4b2)

36
∑

cyc

(2a2b2 − a4)

(this is of course 1

4
(OG)2, which can be easily verified)

The Mittenpunkt M has normalized coordinates [7]

1
∑

cyc

(2ab − a2)
(a(b + c − a), b(a + c − b), c(a + b − c))

and so we may determine d2 := (MM ′)2, the square of the distance from the centre of the disc to
the Mittenpunkt, an expression that does not simplify greatly and so is omitted here. If d2 ≤ d1,
then, since the distances are non-negative, we can infer MM ′ ≤ OM ′, which is to say M is no
further than the radius of the circle from the centre M ′ or rather M is constrained to the disc on
diameter OG as desired.

Evaluating and simplifying the expression d1−d2 gives −5c3ba2−4b2a4−4b4c2−4c2a4+18b2a2c2−

4c4a2−4b4a2−4b2c4 +a5b+6a3b3 +ab5 +4c4ab−5ca2b3−5ca3b2 +4cb4a+4ca4b−5c2a3b−5c3ab2 +
c5a + c5b + 6c3a3 + 6c3b3 + ca5 + cb5 − 5c2ab3/6(a2 + b2 + c2 − 2ab − 2ac − 2bc)2 which, assuming
a non-equilateral, non-degenerate triangle, will have strictly positive denominator and hence will
be positive (as desired) precisely when the numerator is positive. This unwieldy expression can be
more elegantly captured as the homogeneous symmetric inequality

∑

sym

(3a2b2c2 + a5b + 3a3b3 + 2a4bc) ≥
∑

sym

(4a4b2 + 5a3b2c)

Which Mathematica1 confirms is valid for any a, b, c > 0. Unfortunately, this inequality cannot be
easily proved with Muirhead’s Theorem [6] or related results; [5] for instance sets out an algorithm
for testing such an inequality which is inconclusive for this example.

1Thanks to Stanley Rabinowitz for this calculation
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4.2 The Gergonne Point

Simple experimentation reveals that the Gergonne point is neither constrained to, nor restricted
from, the Brocard disc. The following figure provides an example of each case.

|AB|= 59

|AC|= 29.27

|BC|= 60.15

A

B

C

Incenter I

Circumcentre O

Gergonne Point Ge
Symmedian Point Sym

|AB|= 59

|AC|= 39.1

|BC|= 40.73

A

B

C

Incenter I

Circumcentre O

Gergonne Point Ge

Symmedian Point Sym

Figure 7: Possible positions of the Gergonne point both in- and outside the Brocard disc.

4.3 The Incenter

The Incenter is conjectured to lie in the intersection of the discs enclosed by the Brocard and
Parry circles. Figure 6 illustrates an example.
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