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The point Counting Problem

The group law on elliptic curves is well-known and gives rise to elliptic
curve cryptography systems which find application to government and
industry today. However, the generalisation to higher genus requires the
manipulation of divisor classes rather than points, and analogues of key
genus 1 results have yet to be found. Nonetheless, effective computation
within the group is possible, and techniques for finding the cardinality of
hyperelliptic curve jacobians are improving, with calculations over curves
of cryptographically significant size having recently been achieved. This
report sets out the mathematical background to this problem, its
cryptographic application and a solution strategy from algebraic geometry;
and discusses the two main approaches employed in its attack.
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Curves and Points

Definition

Let f ∈ K [u] be a squarefree monic polynomial of degree 2g + 1 and
h ∈ K [u] be of degree at most g . Then a curve with affine model

C : v2 − h(u)v = f (u)

is described as a hyperelliptic curve of genus g . The special case of genus
1, gives an elliptic curve.

Definition

A pair P = (x , y) ∈ K̄ × K̄ is described as a point of C if
y2 − h(x)y = f (x). The point is rational if (x , y) ∈ K × K .
Since we work in affine rather than projective space, there is also the
rational point at infinity, ∞.
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Divisors

Definition

A divisor D of C is a finite formal sum of points of C :

D =
∑

i

′
miPi mi ∈ Z

Its degree is given by
∑

i mi .

Definition

The group of divisors DivC is the set of divisors equipped with formal
(pointwise) addition; it has a subgroup, Div0

C , consisting of the degree 0
divisors.
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Principal Divisors

Definition

Consider a function h ∈ K (C ) denoted h = p/q for p, q ∈ K [u, v ] such
that v2 − f 6 | q: that is, q is not everywhere zero on C . Then h will have a
finite set of zeros (those of p) and of poles (zeros of q); we associate to h
a divisor, (h), where the Pi are those zeros and poles and mi their
multiplicities:

(h) := div(h)0 − div(h)∞ =
∑
Pi∈

{zeros of p}

ordPi
(p)Pi −

∑
Pi∈

{zeros of q}

ordPi
(q)Pi

Definition

If there is a nonzero function h on C such that D a divisor is (h), then D
is described as principal.
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Jacobian
The set PrincC of principal divisors is a subgroup of Div0

C .

Definition

The divisor class group of C of degree zero or Picard group of C ,
(equivalently here the Jacobian of C ) is the quotient group

Pic0
C = Div0

C/PrincC

Thus D1,D2 are in the same class if ∃f ∈ K (C ) s.t. div(f ) = D1 − D2.

Any divisor D ∈ Div0
C will have a representative of weight r

D =
r∑

i=1

Pi − r∞

such that if Pi is a point in the sum, then Pj 6= −Pi for any j 6= i . Such a
representation is called semi-reduced.
If r ≤ g the representation is called reduced. By Riemann-Roch, any
divisor class in Pic0

C has a reduced representative.
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Mumford polynomials

Definition

Let D be a semi-reduced divisor whose points are Pi = (xi , yi ). We
associate to D polynomials a, b ∈ K̄ [u] such that

a(u) =
r∏
i

(u − xi )

b(xi ) = yi 1 ≤ i ≤ r

such that b has degree less than that of a, and the appropriate multiplicity
for repeated points- i.e., if Pi occurs k times in the semi-reduced
representation of D, then (u − xi )

k divides b − yi . We write

D = div(a, b)

Definition

D = div(a, b) is rational if a, b ∈ K [u].
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Group Law (roughly!)

Given divisor classes D1,D2 ∈ JK (C ), take rational reduced
representatives D1,D2.

Form a new rational, semi-reduced divisor D1 + D2 by combining the
points of D1,D2 in Div0

C .

Reduce modulo PrincC to some rational D of degree at most g .

Define D1 ⊕D2 to be the equivalence class of D in JK (C ).

Explicit algorithms have been developed for these; see report for
description or website for SAGE and Maple implementations.
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DLP

Let (G ,⊕) be an additive cyclic group of prime order p generated by an
element g . We can define a map

ϕ : Z → G

n 7→ [n]g = g ⊕ g ⊕ · · · ⊕ g︸ ︷︷ ︸
n copies

This gives an isomorphism between (Z/pZ,+) and (G ,⊕). Given
g , h ∈ G , the Discrete Logarithm Problem (DLP) is to find k ∈ Z such
that [k]g = h.
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DLP

Example

Let g = a + pZ be a generator of (Z/pZ,+), and h = b + pZ another
element. Then the DLP

[k]g = h

has solution
k = a−1b (mod p)

and this calculation is of polynomial complexity in p.

For secure DLP cryptography we need a cyclic group such that
computation of the group law is efficient, but the isomorphism with Z/pZ
is not apparent from the group elements. It is believed that the groups of
rational points on elliptic curves / rational divisors on hyperelliptic curves
are indeed suitable.
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Frobenius Endomorphism

An alternative characterisation of rational divisors can be obtained via the
Frobenius endomorphism:

Definition

The Frobenius morphism is the map φq : α 7→ αq. It extends naturally to
points of K̄ ; to polynomials over K̄ coefficient-wise, and hence to divisors
div(a, b), leading to π, the Frobenius endomorphism of Pic0

C .
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Characteristic Polynomial of Frobenius

A polynomial is fixed by π if and only if its coefficients are from K ; hence
JK (C ) = ker(idPic0

C
− π) and so

#JK (C ) = deg(idPic0
C
− π)

π acts linearly as an element of End(Pic0
C ): denoting its characteristic

polynomial as χ(T ), we have

#JK (C ) = χ(1)

Theorem

(Weil Theorems)
χ(T ) is a monic integer polynomial of degree 2g with roots λi (the
eigenvalues of Frobenius) of absolute value

√
q.
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Weil Interval

Corollary

(Weil Interval)

(
√

q − 1)2g ≤ #JK (C ) ≤ (
√

q + 1)2g

Example

For a hyperelliptic curve of genus 2, we have:

χ(T ) = T 4 − s1T
3 + s2T

2 − qs1T + q2

#JK (C ) = 1− s1 + s2 − qs1 + q2 ≤ (
√

q + 1)4

|s1| ≤ 4
√

q, |s2| ≤ 6q.

Thus in genus 2 it suffices to compute JK (C ) modulo
w = (

√
q + 1)4 − (

√
q − 1)4 = 2b4(q + 1)

√
qc.
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Generic Algorithms

Theorem

Generic Group order algorithm
INPUT: A group G and interval [a, b] of width w s.t. |G | ∈ [a, b].
OUTPUT: The order of G.

1 Generate a random element g ∈ G.

2 compute n=ord(g) and set e = n.

3 While e < w:
Generate a random element g ∈ G.
set e = lcm{e, ord(g)}

4 Return the unique N ∈ [a, b] s.t. N ≡ 0 mod e.
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Generic Algorithms

e converges to the exponent of the group, which necessarily divides
its order N (so N ≡ 0 modulo e).

Thus algorithm will fail to terminate for groups where the exponent is
less than w .

Algorithm requires only a “black box” for the group law and random
element generation but depends upon the calculation of the order of
such elements.

This is a special case of the discrete logarithm problem!

The best generic algorithms for the DLP of recovering n such that
[n]g = h for some g , h ∈ G - the Baby Steps, Giant Steps algorithm
and Pollard’s Rho method - have complexity of order

√
n, and are

thus known as square-root algorithms.

It was conjectured that a similar complexity bound would hold for
order calculation, but a very recent result (Sutherland, 2007) shows
that a lower bound holds there.
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Schoof’s Algorithm

Since the cardinality of JK (C ) and the coefficients of χ(T ) are bounded,
their exact values can be recovered from their values modulo a selection of
primes via the chinese remainder theorem. For l coprime to p, the
characteristic polynomial of π modulo l is the characteristic polynomial of
π restricted to the l-torsion subgroup.
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Elliptic Curves

In the genus 1 case, the l-torsion elements are characterised by the division
polynomials φl .
χ takes a particularly simple form, such that we need only determine its
trace t satisfying

π2 − [t]π + [q] = [0]

Schoof’s original approach to step 2 is to recover tl by brute force
determination of a τ ∈ 1, . . . l − 1 such that

(xq2
, yq2

)⊕ [ql ](x , y) = [τ ](xq, yq)

There are explicit formulae for the multiplication-by-m isogeny, and
intermediate expressions are controlled by working modulo the l-division
ideal generated by φl (with coefficients further constrained modulo l).
This algorithm is then of polynomial time complexity, but is still too slow
for curve sizes of cryptographic interest: the φl are of degree (l2 − 1)/2
and hence impractical beyond q ≈ 10200.
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Schoof’s Algorithm

Theorem

Schoof’s algorithm in genus 1
INPUT: Curve E/Fq

OUTPUT: #E (Fq) the cardinality of E .

1 Compute L a set of primes such that∏
l∈L

l ≥ 4
√

q (1)

with L minimal

2 For each l ∈ L, compute tl , the trace modulo l .

3 By the Chinese Remainder theorem, find tL, the trace modulo
∏
l∈L

l .

4 Expressing tL as t in the range −2
√

q ≤ t ≤ 2
√

q gives the true trace.

5 Return q + 1− t.
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Refinements: SEA

Refinements by Elkies and Atkin give rise to the SEA algorithm: by way of
modular polynomials, primes l can be characterised as either Elkies or
Atkin type.

For Elkies primes, φl can be replaced by a factor of degree (l − 1)/2.

Atkin primes give rise to an easily computed set of candidates for tl
and hence t which can be tested against random points, although the
size of this set grows exponentially and thus careful choice of primes
in stage 1 is necessary.

Without precomputation, the determination of the modular
polynomials can be harder than naive determination of tl .

Nonetheless, the SEA algorithm introduces significant performance
gains and is effective for q ≈ 10500.

Record (Nov 2006): computation over Fp with p = 102499 + 7131 was
completed (although this took over a year).
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Hyperelliptic Curves

Problems

Have to work with l-division ideals which may not be principal.

Although hyperelliptic analogues of the modular polynomials have
been developed, they have not lead to an Elkies procedure.
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Schoof-like algorithm in genus 2

Theorem

Schoof’s algorithm in genus 2
INPUT: Curve C/Fq

OUTPUT: #JK (C ).

1 For sufficiently many small primes l :
Set L = {(s1, s2); s1, s2 ∈ [0, l − 1]}.
While #L > 1 do:

I Construct an l-torsion divisor D
I Eliminate elements of L such that

π4(D)− s1π
3(D) + s2π

2(D)− (qs1 mod l)π(D) + (q2 mod l)D 6= 0

I Deduce χ(T ) mod l from the final pair s1, s2.

2 Construct χ(T ) from the χ(T ) mod l by the chinese remainder
theorem.

3 Return χ(1)
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Hybrid Approaches

Theorem

Gaudry-Harley point counting algorithm
INPUT: Curve C/Fq of genus 2.
OUTPUT: #JK (C ).

1 Compute #JK (C ) mod 2e by the halving algorithm.
2 For primes l = 2, 3, 5, . . . , lmax :

I Compute χ(T ) mod l by a Schoof-like algorithm.
I Compute #JK (C ) mod l from χ(T ) mod l.

3 Compute χ(T ) mod p via the Cartier-Manin operator.

4 Compute #JK (C ) mod p from χ(T ) mod p.

5 Compute #JK (C ) mod m = 2e · 3 · · · lmax · p by CRT.

6 Compute #JK (C ) by a square root algorithm that exploits knowledge
of #JK (C ) mod m.
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