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Abstract

The group law on elliptic curves is well-known and gives rise to elliptic curve
cryptography systems which find application to government and industry today.
However, the generalisation to higher genus requires the manipulation of divi-
sor classes rather than points, and analogues of key genus 1 results have yet
to be found. Nonetheless, effective computation within the group is possible,
and techniques for finding the cardinality of hyperelliptic curve jacobians are im-
proving, with calculations over curves of cryptographically significant size having
recently been achieved. This report sets out the mathematical background to
this problem, its cryptographic application and a solution strategy from alge-
braic geometry; and discusses the two main approaches employed in its attack.
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Program of Studies

Themes

I began my studies with [10], the standard reference for elliptic curves. I de-
veloped Maple procecures for explicit computation of the group law, and became
particularly interested in curves over finite fields. I also spent some time looking
at ideas connected to the height of points on elliptic curves, such as szpiro ratios,
the abc conjecture and elliptic divisibility sequences, again using Maple.

These lead me to the broader theme of rational points of curves over finite
fields. Initially I looked at the Weil theorems and the connection between the
number-theoretic properties of zeta functions and the cardinality of corresponding
curves, in the context of controlling the ‘defect’ (that is, seeking curves with large
numbers of points). Again, this had a highly computational flavour.

I then became interested in the technical challenges presented by computation
of this cardinality for elliptic curves. I started to use the Computer Algebra
System SAGE ([S]), and studied the SEA algorithm and related material, such
as modular polynomials, specific to elliptic curves.

The absence of equivalent techniques for higher genus, and the approaches
employed as a result, have been the focus of my attention since, and are the
subject of this report. Following Cantor ([1],[2]), Gaudry ([4],[5]) and several
sections of [3] I have written Maple and SAGE/Python ‘black-box’ programs for
explicit computation with rational divisor classes of hyperelliptic curves, as well
as implementing generic algorithms for tasks such as integer multiplication or
order determination. I am particularly interested in the interaction between such
techniques and modular approaches.

Summary of Activities

I maintain a research weblog ([W]) through which summary notes and source
code on many of the above topics are available.

During the year I attended Dr. Cheltsov’s Complex Algebraic Surfaces (semester
1) and LFCS taught postgraduate courses on Gröbner Bases (semester 1) and
Formal analysis of cryptographic protocols (semester 2).

The Geometry Club provides a forum for postgraduates to present seminars on
their work; I attended a few of these, and gave one on Hyperelliptic Curves over
finite fields in semester 2.
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Chapter 1

Introduction

1.1 Preliminaries

Definition 1. Let f ∈ K[u] be a squarefree monic polynomial of degree 2g + 1
and h ∈ K[u] be of degree at most g. Then a curve with affine model

C : v2 − h(u)v = f(u)

is described as a hyperelliptic curve of genus g. The special case of genus 1, gives
an elliptic curve.

Throughout, we assume that K = Fq is a finite field of characteristic not 2 or
2g + 1, with algebraic closure K̄.

Definition 2. A pair P = (x, y) ∈ K̄ × K̄ is described as a point of C if
y2 − h(x)y = f(x). The point is rational if (x, y) ∈ K ×K.
Since we work in affine rather than projective space, there is also the rational
point at infinity, ∞.

The well-known “chord and tangent” procedure equips the set of rational
points of an elliptic curve with a group structure, and thus determining the num-
ber of such points is equivalent to finding the cardinality of the group. However,
for curves of higher genus there is no group structure on the points, which gives
rise to two possible generalisations of the point counting problem:

• For a curve C, compute #X(K), the number of rational points over K.

• For a curve C, construct a finite group G containing the rational points
(thus equipping them with a group law) and compute its cardinality.

In fact, through an appropriate choice of the group G, these problems are con-
nected. To achieve this, we introduce divisors and the Jacobian of a curve as
follows:
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1.2 Divisors

Definition 3. A divisor D of C is a finite formal sum of points of C:

D =
∑

i

′
miPi mi ∈ Z

Its degree is given by
∑

i mi.

Definition 4. The group of divisors DivC is the set of divisors equipped with
formal (pointwise) addition; it has a subgroup, Div0

C , consisting of the degree 0
divisors.

Any polynomial p(u, v) can be considered as a function on C of the form
p = a(u) + b(u)v, since v2 = f(u).
If p vanishes at (x, y) then the order of the zero (x, y) of p is the exponent of the
highest power of (u− x) which divides a− b2f .

Definition 5. Thus we can denote functions from K(C) as h = p/q for p, q ∈
K[u, v] such that v2 − f 6 | q: that is, q is not everywhere zero on C. Then h will
have a finite set of zeros (those of p) and of poles (zeros of q); we associate to h
a divisor, (h), where the Pi are those zeros and poles and mi their multiplicities:

(h) := div(h)0 − div(h)∞ =
∑
Pi∈

{zeros of p}

ordPi
(p)Pi −

∑
Pi∈

{zeros of q}

ordPi
(q)Pi

Definition 6. If there is a nonzero function h on C such that D a divisor is (h),
then D is described as principal.

The set PrincC of principal divisors is a subgroup of Div0
C .

Definition 7. The divisor class group of C of degree zero or Picard group of C,
(equivalently here the Jacobian of C) is the quotient group

Pic0
C = Div0

C/PrincC

Thus D1, D2 are in the same class if ∃f ∈ K(C) s.t. div(f) = D1 −D2.

Any divisor D ∈ Div0
C will have a representative of weight r

D =
r∑

i=1

Pi − r∞

such that if Pi is a point in the sum, then Pj 6= −Pi for any j 6= i. Such a
representation is called semi-reduced.
If r ≤ g the representation is called reduced. By Riemann-Roch, any divisor class
in Pic0

C has a reduced representative.

6



1.3 Mumford polynomials, rationality and the

group law

Definition 8. Let D be a semi-reduced divisor whose points are Pi = (xi, yi).
We associate to D polynomials a, b ∈ K̄[u] such that

a(u) =
r∏
i

(u− xi)

b(xi) = yi 1 ≤ i ≤ r

such that b has degree less than that of a, and the appropriate multiplicity for
repeated points- i.e., if Pi occurs k times in the semi-reduced representation of
D, then (u− xi)

k divides b− yi. We write

D = div(a, b)

Definition 9. D = div(a, b) is rational if a, b ∈ K[u].

Thus a rational divisor needn’t be the sum of rational points! However, this
will be true of a weight 1 rational divisor; which is a single rational point thought
of as a divisor. For an elliptic curve, therefore, the existence of weight 1 repre-
sentatives for sums of rational points ensures that the group of rational divisors
is isomorphic to the rational points of the curve. As previously mentioned, this
fails in higher genus: we can now see that this is because the sum of two points
as a weight 2 divisor needn’t reduce further.

However, the set of rational divisors JK(C) is closed under the group operation
of Pic0

C (inherited from Div0
C) and each rational point of C corresponds to a

distinct divisor class. Thus JK(C) is a suitable generalisation to higher genus of
the group of rational points of an elliptic curve. In the next section an explicit
description of the group law will be given in terms of the Mumford polynomial
representation, but a sketch of the procedure can already be given:

• Given divisor classes D1,D2 ∈ JK(C), take rational reduced representatives
D1, D2.

• Form a new rational, semi-reduced divisor D1 +D2 by combining the points
of D1, D2 in Div0

C .

• Reduce modulo PrincC to some rational D of degree at most g.

• Define D1 ⊕D2 to be the equivalence class of D in JK(C).

1.4 Applications

Both the set of rational points X(K) and the group of rational divisors JK(C)
have found application in opposite ends of the communication industry: error-
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correcting codes (ensuring the readability of messages) and cryptography (re-
stricting the readability of messages). For a discussion of the connection between
algebraic curves and codes, see [6]. The use of hyperelliptic curves in cryptogra-
phy will be discussed here since it depends on techniques also of relevance to the
point counting problem.

The Discrete Logarithm Problem

In the late 1970s asymmetric key encryption was introduced: this depends upon
“one-way functions”: functions which are easy to evaluate but computationally
infeasible to invert without an extra piece of information. Thus one can secretly
choose a “private key”, and safely disclose the encryption procedure in the form
of a “public key”; messages encrypted by the public key can only be read by
the holder of the private key, which need never be shared. Asymmetric key
systems tend to be slower than traditional symmetric encryption of equivalent
strength, but those require prior arrangement of a secret key: an unreasonable
expectation in scenarios such as e-commerce. The two are thus typically combined
by the use of asymmetric encryption to securely exchange a symmetric key, but
the distinction of public/private keys also allows for advances such as digital
signatures.

Whilst no true one-way functions have been proven to exist, there are two
strong candidates: the original approach of RSA (based on the difficulty of fac-
torisation) and the more recent discrete logarithm problem for finite groups. The
NSA currently recommends elliptic-curve cryptography over RSA for public key
systems due to its greater security per bit: for instance, securing a 128-bit sym-
metric key requires a 3072-bit RSA key, but only a 256-bit elliptic curve key; for
a 256-bit symmetric key, these grow to 15360 and 521 bits respectively. As will
be illustrated later, curves of higher genus offer larger group sizes relative to that
of the underlying finite field; the first genus 2 curves of cryptographic strength
were demonstrated in 2004 by Gaudry and Schost (see [5]).

Let (G,⊕) be an additive cyclic group of prime order p generated by an element
g. We can define a map

ϕ : Z → G

n 7→ [n]g = g ⊕ g ⊕ · · · ⊕ g︸ ︷︷ ︸
n copies

This gives an isomorphism between (Z/pZ, +) and (G,⊕). Given g, h ∈ G, the
Discrete Logarithm Problem (DLP) is to find k ∈ Z such that [k]g = h.

The difficulty of the DLP depends in a vital way upon the underlying group. For
the obvious choice of a group isomorphic to (Z/pZ, +), namely itself, recovering
the discrete logarithm is not difficult:
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Example 1. Let g = a+pZ be a generator of (Z/pZ, +), and h = b+pZ another
element. Then the DLP

[k]g = h

has solution
k = a−1b (mod p)

and this calculation is of polynomial complexity in p.

For secure DLP cryptography we need a cyclic group such that computation of
the group law is efficient, but the isomorphism with Z/pZ is not apparent from
the group elements. It is believed that the groups of rational points on elliptic
curves / rational divisors on hyperelliptic curves are indeed suitable.
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Chapter 2

Explicit computation in the
Jacobian group

In [1] the first explicit formulae for composition of divisor classes are given. These
are carefully constructed to avoid decomposing a divisor into its constituent points
(which even for a rational divisor may be in K̄\K) by consideration of gcds
and resultants to identify the problem cases of common points between the di-
visors. A reduction procedure is also given, which depends on the observation
that D = div(a, b) is equivalent to E = −((b− v)−D) which is of lesser weight.
Instead of Cantor’s original algorithm we present here the version from [7], which
corresponds to the more general model of definition 1:

Theorem 1. Explicit Group law equations
Composition
INPUT: D1 = div(u1, v1), D2 = div(u2, v2); C : y2 + h(x)y = f(x)
OUTPUT: D = div(u, v) semi-reduced such that D = D1 + D2 .

1. compute d1 = gcd(u1, u2) = e1u1 + e2u2

2. compute d = gcd(d1, v1 + v2 + h) = c1d1 + c2(v1 + v2 + h)

3. set s1 = c1e1, s2 = c1e2, s3 = c2 such that d = s1u1 + s2u2 + s3(v1 + v2 + h)

4. u =
u1u2

d2

5. v =
s1u1v2 + s2u2v1 + s3(v1v2 + f)

d
mod u

Reduction
INPUT: D = div(u, v) semi-reduced.
OUTPUT: D′ = div(u′, v′) reduced such that D ≡ D′ .

1. set u′ =
f − vh− v2

u
, v′ = (−h− v) mod u′

2. If deg(u′) > g, set u = u′, v = v′

goto step 1

3. make u′ monic
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No freely-available computer algebra system currently supports working in
the Jacobian of a hyperelliptic curve over finite fields. SAGE ([S]) is capable of
such computations over Q, and using the above I have extended its procedures
to work with finite fields. I also improved the multiplication-by-n calculations
(to use log2(n) instead of n group operations) and introduced order-finding via
Terr’s Baby Step, Giant Step variant (described in [3]). These modifications (see
appendix) are currently under peer review for potential inclusion in the main
SAGE distribution, and can be obtained from my website. I have also released
an implementation in Maple for prime fields.
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Chapter 3

Characteristic Polynomial of
Frobenius

An alternative characterisation of rational divisors can be obtained via the Frobe-
nius endomorphism:

Definition 10. The Frobenius morphism is the map φq : α 7→ αq. It extends
naturally to points of K̄; to polynomials over K̄ coefficient-wise, and hence to
divisors div(a, b), leading to π, the Frobenius endomorphism of Pic0

C .

A polynomial is fixed by π if and only if its coefficients are from K; hence
JK(C) = ker(idPic0

C
− π) and so

#JK(C) = deg(idPic0

C
− π)

π acts linearly as an element of End(Pic0
C): denoting its characteristic poly-

nomial as χ(T ), we have
#JK(C) = χ(1)

Theorem 2. (Weil Theorems)
χ(T ) is a monic integer polynomial of degree 2g with roots λi (the eigenvalues of
Frobenius) of absolute value

√
q.

This immediately gives us a bound for the cardinality of the group, which will
motivate a number of search strategies.

Corollary 3. (Weil Interval)

(
√

q − 1)2g ≤ #JK(C) ≤ (
√

q + 1)2g

Example 2. For a hyperelliptic curve of genus 2, we have:

• χ(T ) = T 4 − s1T
3 + s2T

2 − qs1T + q2

• #JK(C) = 1− s1 + s2 − qs1 + q2 ≤ (
√

q + 1)4

• |s1| ≤ 4
√

q, |s2| ≤ 6q.
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Chapter 4

Search strategies

4.1 Square-root algorithms

From the results of the previous chapter, it suffices to compute JK(C) modulo
w = (

√
q +1)4− (

√
q−1)4 = 2b4(q + 1)

√
qc. This motivates modular approaches

(see the following section), but purely group-theoretic techniques can also be
applied.

Theorem 4. Generic group order algorithm
INPUT: A group G and interval [a, b] of width w s.t. |G| ∈ [a, b].
OUTPUT: The order of G.

1. Generate a random element g ∈ G.

2. compute n=ord(g) and set e = n.

3. While e < w:
Generate a random element g ∈ G.
set e = lcm{e, ord(g)}

4. Return the unique N ∈ [a, b] s.t. N ≡ 0 mod e.

The quantity e converges to the exponent of the group, which necessarily
divides its order N (so N ≡ 0 modulo e) . However, the algorithm will therefore
fail to terminate for groups where the exponent is less than w.

Moreover, although the algorithm requires only a “black box” for the group
law (developed for hyperelliptic curves in chapter 2) and random element gen-
eration (easy for JK(C) by generating random rational points of C), it depends
upon the calculation of the order of such elements. This can be seen as a special
case of the discrete logarithm problem, the computational difficulty of which is
the reason for interest in hyperelliptic curve cryptography!

The best generic algorithms for the discrete logarithm problem of recovering
n such that [n]g = h for some g, h ∈ G - the Baby Steps Giant Steps algorithm
and Pollard’s Rho method - have complexity of order

√
n, and are thus known

as square-root algorithms. It was conjectured that a similar complexity bound
would hold for order calculation, but a very recent result [11] shows that a lower
bound holds there, and in special cases significantly faster computation may be
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possible. I am looking in to how these techniques could be optimised for groups
of rational divisors.

4.2 Schoof’s Algorithm

Since the cardinality of JK(C) and the coefficients of χ(T ) are bounded, their
exact values can be recovered from their values modulo a selection of primes via
the chinese remainder theorem. For l coprime to p, the characteristic polynomial
of π modulo l is the characteristic polynomial of π restricted to the l-torsion
subgroup.

4.2.1 Elliptic Curves

In the genus 1 case, the l-torsion elements are characterised by the division poly-
nomials φl, which can be computed recursively. Further, χ takes a particularly
simple form, such that we need only determine its trace t satisfying

π2 − [t]π + [q] = [0]

This leads to Schoof’s algorithm:

Theorem 5. Schoof’s algorithm in genus 1
INPUT: Curve E/Fq

OUTPUT: #E(Fq) the cardinality of E.

1. Compute L a set of primes such that∏
l∈L

l ≥ 4
√

q (4.1)

with L minimal

2. For each l ∈ L, compute tl, the trace modulo l.

3. By the Chinese Remainder theorem, find tL, the trace modulo
∏
l∈L

l.

4. Expressing tL as t in the range −2
√

q ≤ t ≤ 2
√

q gives the true trace.

5. Return q + 1− t.

Schoof’s original approach to step 2 is to recover tl by brute force determina-
tion of a τ ∈ 1, . . . l − 1 such that

(xq2

, yq2

)⊕ [ql](x, y) = [τ ](xq, yq)

There are explicit formulae for the multiplication-by-m isogeny, and intermediate
expressions are controlled by working modulo the l-division ideal generated by
φl (with coefficients further constrained modulo l). This algorithm is then of
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polynomial time complexity, but is still too slow for curve sizes of cryptographic
interest: the φl are of degree (l2 − 1)/2 and hence impractical beyond q ≈ 10200.

Refinements by Elkies and Atkin give rise to the SEA algorithm: by way
of modular polynomials, primes l can be characterised as either Elkies or Atkin
type. For the former, φl can be replaced by a factor of degree (l − 1)/2, whilst
the latter give rise to an easily computed set of candidates for tl and hence t
which can be tested against random points, although the size of this set grows
exponentially and thus careful choice of primes in stage 1 is necessary. Without
precomputation, the determination of the modular polynomials can be harder
than naive determination of tl. Nonetheless, the SEA algorithm introduces sig-
nificant performance gains and is effective for q ≈ 10500: in November 2006 a
record computation over Fp with p = 102499 + 7131 was completed (although this
took over a year of computation).

4.2.2 Hyperelliptic Curves

However, the SEA algorithm does not readily lift to higher genus: one has to work
with l-division ideals which may not be principal (unlike the elliptic case), and al-
though hyperelliptic analogues of the modular polynomials have been developed,
they have not lead to an Elkies procedure.

In [4] and [5], the authors develop a series of polynomial constraints on l-
torsion divisors of curves of genus 2: for a reduced divisor D = P1 + P2 to satisfy
[l]D = 0 we obviously require [l]P1 = −[l]P2. Using explicit formulae for the
multiplication-by-l (from Cantor [2]) This gives a series of four polynomial equa-
tions for the four unknowns x1, y1 = P1, x2, y2 = P2. However, these coefficients
needn’t be in K.

Given the ability to construct such divisors, there is then a hyperelliptic equiv-
alent for Schoof’s original algorithm:

Theorem 6. Schoof’s algorithm in genus 2
INPUT: Curve C/Fq

OUTPUT: #JK(C).

1. For sufficiently many small primes l:
Set L = {(s1, s2); s1, s2 ∈ [0, l − 1]}.
While #L > 1 do:

• Construct an l-torsion divisor D

• Eliminate elements of L such that

π4(D)− s1π
3(D) + s2π

2(D)− (qs1 mod l)π(D) + (q2 mod l)D 6= 0

• Deduce χ(T ) mod l from the final pair s1, s2.

2. Construct χ(T ) from the χ(T ) mod l by the chinese remainder theorem.

3. Return χ(1)

Note ([4]) that #X(C) can also be recovered as q − s1.
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4.3 Hybrid Algorithms

The genus 2 approach described above is only feasible for l at most 13. Various
other techniques introduce further modular information. By a halving algorithm
(see [4]), divisors of order 2k for increasing k, and hence χ(T ) mod 2e for some e,
can be constructed. A technique based on the Cartier-manin operator can recover
χ(T ) mod the characteristic p of the underlying field, although this costs time
exponential in log p.

This modular information can then be incorporated into a BSGS algorithm,
speeding the computation by ignoring incompatible steps. The algorithm outline
below is given in [8], and as implemented in [5] allows for cardinalities of around
164-bit size to be computed in about a week.

Theorem 7. Gaudry-Harley point counting algorithm
INPUT: Curve C/Fq of genus 2.
OUTPUT: #JK(C).

1. Compute #JK(C) mod 2e by the halving algorithm.

2. For primes l = 2, 3, 5, . . . , lmax:

• Compute χ(T ) mod l by a Schoof-like algorithm.

• Compute #JK(C) mod l from χ(T ) mod l.

3. Compute χ(T ) mod p via the Cartier-Manin operator.

4. Compute #JK(C) mod p from χ(T ) mod p.

5. Compute #JK(C) mod m = 2e · 3 · · · lmax · p by CRT.

6. Compute #JK(C) by a square root algorithm that exploits knowledge of
#JK(C) mod m.

Most steps of the above algorithm are subject to feasibility constraints and
have potential for refinement or replacement; further, the advances in generic
group order computation may provide practical means of recovering additional
information about #JK(C) that would supplement this modular approach.
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