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The Discrete Logarithm Problem

Let (G,⊕) be an additive cyclic group of prime order p generated by
an element g. We can define a map

ϕ : Z → G

n → [n]g = g ⊕ g ⊕ · · · ⊕ g︸ ︷︷ ︸
n copies

This gives an isomorphism between (Z/pZ,+) and (G,⊕). The discrete
logarithm problem to base g (DLP) is to compute the inverse map:

Discrete Logarithm Problem

Given g, h ∈ G, find k ∈ Z such that [k]g = h.
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The Discrete Logarithm Problem

The DLP needn’t be difficult!
If the isomorphism between G and Z/pZ is obvious, then the DLP is
easy, since it is easy in (Z/pZ,+)

Example

Let g = a + pZ be a generator of (Z/pZ,+), and h = b + pZ another
element. Then the DLP

[k]g = h

has solution
k = a−1b (mod p)

and this calculation is of polynomial complexity in p.
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ElGamal public key encryption

Let g generate G and suppose Bob has private key a; letting
h = [a]g he can safely release as a public key (g, h) as (assuming
hard DLP) there’s no easy way to retrieve a.

Suppose Alice wishes to send a message m ∈ G. She picks some
k ∈ 1 . . . , |G| randomly and computes γ = [k]g, δ = m⊕ [k]h.
Bob receives the ciphertext c = (γ, δ). He, unlike everyone else,
knows a so can find [a]γ = [ak]g.
Finding the inverse is easy; call that d.
Then d⊕ δ = m, Alice’s message.
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Groups of rational divisors

Requirements

For secure DLP cryptography we need a cyclic group such that
computation is efficient, but the isomorphism with Z/pZ is not
apparent from the group elements. It is believed that the groups of
rational points on elliptic curves / rational divisors on hyperelliptic
curves are suitable.

Strategy/Requirements

Give a representation of the group of rational divisors and their
group law.
Compute the cardinality of the group. (this step is also of
number-theoretic interest.)
Identify a large prime subgroup G and a generator g to use for
ElGamal. (this issue will not be covered.)
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Curves

Monster-barring

Throughout, we assume a field K = Fq of characteristic p not 2 or 3,
with algebraic closure A; and a non-singular curve, considered over
affine space. Then we can work with the following:

Definition

C : v2 = f(u) defines a hyperelliptic curve of genus g over K if
f ∈ K[u] is of degree 2g + 1 with distinct roots in K.
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Points and Divisors

Definition

A pair P = (x, y) ∈ A×A is described as a point of C if y2 = f(x).
Note that P needn’t have coefficients from K, merely A!
There is also the point at infinity, ∞.

Definition

A divisor D is a finite formal sum of points of C:

D =
∑

i

miPi mi ∈ Z
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Points and Divisors

Definition

The degree or weight of D is
∑

i mi.

Definition

The group of divisors D is the set of divisors equipped with formal
(pointwise) addition; it has a subgroup, D0, consisting of the degree 0
divisors.

Graeme Taylor (Edinburgh) Hyperelliptic Curves over Finite FieldsApril 27, 2007 9 / 30



Points and Divisors

Definition

The degree or weight of D is
∑

i mi.

Definition

The group of divisors D is the set of divisors equipped with formal
(pointwise) addition; it has a subgroup, D0, consisting of the degree 0
divisors.

Graeme Taylor (Edinburgh) Hyperelliptic Curves over Finite FieldsApril 27, 2007 9 / 30



Functions

Any polynomial p(u, v) can be considered as a function on C of the
form p = a(u) + b(u)v, since v2 = f(u).
If p vanishes at (x, y) then the order of the zero (x, y) of p is the
exponent of the highest power of (u− x) which divides a2 − b2f .

Definition

Thus we can define functions on C as h = p/q for p, q ∈ K[u, v] such
that v2 − f 6 | q: that is, q is not everywhere zero on C. Then h will
have a finite set of zeros (those of p) and of poles (zeros of q); we
associate to h a divisor, (h), where the Pi are those zeros and poles and
mi their multiplicities:∑

zeros of p

ordPi(p)Pi −
∑

zeros of q

ordPi(q)Pi
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Principal Divisors

Definition

If there is a nonzero function h on C such that D a divisor is (h), then
D is described as principal.

Definition

The set of principal divisors, P, is actually a subgroup of D0 and hence
of D.

Definition

The Jacobian of C, J , is the quotient group D0/P.
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Reduced Divisors

Any D ∈ J will have a representation

D =
r∑

i=1

Pi − r∞

such that if Pi is a point in the sum, then Pj 6= −Pi for any j 6= i. Such
a representation is called semi-reduced.
If r ≤ g the representation is called reduced.

Theorem

Any D ∈ J has a reduced representation.
(this follows from Riemann-Roch)
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Group Law (roughly!)

Take divisors D1, D2 in reduced form
Form a new, semi-reduced divisor D1 + D2 by combining the
points of D1, D2

Reduce to some D of degree at most g, this is D1 ⊕D2

Notice that for genus 1 (elliptic curves) we are combining a pair of
points into a point: this is the usual chord-and-tangent process. But
for higher genus, the sum of two points needn’t be a point, as the
divisor consisting of their sum needn’t reduce further.
So the set of rational points don’t form a subgroup! Worse, as it stands
we don’t actually have a description of rationality; nor an explicit
description of the reduction process. Computing with the constituent
points is also undesirable.
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Mumford Polynomial representation of Divisors

Definition

Let D be a semi-reduced divisor whose points are Pi = (xi, yi). We
associate to D polynomials a, b ∈ A[u] such that

a(u) =
r∏
i

(u− xi)

b(xi) = yi 1 ≤ i ≤ r

such that b has degree less than that of a, and the appropriate
multiplicity for repeated points- i.e., if Pi occurs k times in the
semi-reduced representation of D, then (u− xi)k divides b− yi. We
write

D = div(a, b)
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Rational Divisors

Definition

D = div(a, b) is rational if a, b ∈ K[u].

Beware that a rational divisor needn’t be the sum of rational points!
However, this will be true of a weight 1 rational divisor; which is a
single rational point thought of as a divisor.
For an elliptic curve, therefore, the rational divisors are isomorphic to
the rational points of the curve; this fails in higher genus.
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G, at last

The set JK of rational elements of the Jacobian is a subgroup.
We can work over K[u] with the polynomials a, b; clever
manipulation of gcds allows for the group law computation
without decomposing into the points (which would often mean
working in A).
There are explicit formulae for composition and reduction (see
website for details and Maple implementation).

So we can compute in JK ; a large prime subgroup would be suitable
for use as G in an ElGamal cryptosystem. For this, we need #JK : this
is the point counting problem.
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Frobenius endomorphism

Definition

The Frobenius morphism is the map φq : α 7→ αq. It extends naturally
to points of A; to polynomials over A coefficient-wise, and hence to
divisors div(a, b), leading to the Frobenius endomorphism of J .

Theorem

For K = Fq

JK = ker(idJ − Φq).
Hence #JK = deg(idJ − φq).
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Characteristic Polynomial of Frobenius

Associated to φq is a polynomial χ(T ), the characteristic polynomial of
Frobenius. The definition is in terms of l-adic Galois representation; we
don’t need it! We call the roots λi of χ the eigenvalues of the Frobenius
endomorphism.

χ is monic, degree 2g and has integer coefficients.
#JK = χ(1)
Riemann Hypothesis for curves over finite fields: |λi| =

√
q.

The characteristic polynomial for the restriction of the Frobenius
endomorphism to J [n] is χ mod n.
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Zeta Functions

Definition

For X an algebraic variety over Fq, let Nk be the number of
Fqk -rational points on X.
Then the zeta function of X over Fq is

Z(T ) := exp

( ∞∑
k=1

Nk
T k

k

)

Theorem

For C a smooth genus g projective curve we have

Z(T ) =
T 2gχ(1/T )

(1− T )(1− qT )
=
∏2g

i=1(1− λiT )
(1− T )(1− qT )
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Weil Intervals

From the previous observations, we have for C a genus g hyperelliptic
curve defined over K = Fq:

Theorem

(
√

q − 1)2g ≤ #JK ≤ (
√

q + 1)2g

Theorem

Nk = qk + 1−
2g∑
i=1

λk
i

Hence we have the Hasse-Weil bound

−2g
√

q + q + 1 ≤ #C(Fq) ≤ 2g
√

q + q + 1
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Interval searches

These two sets of bounds coincide for elliptic curves, since then the set
of rational points on the curve is identified with the Jacobian. For
hyperelliptic curves, knowledge of #C(Fq) is of interest from a
number-theory point of view, but as the set is not a group it is #JK

that we need for cryptographic purposes.

Let w be the width of the interval; then it suffices to determine #JK

mod w.
This motivates a number of techniques; these can often be combined by
the Chinese Remainder Theorem (if we know #JK modulo coprime
values p1 . . . , pn then we know it modulo p1 × · · · × pn).
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Element Orders

It’s fairly easy to generate random rational points of C and hence
to form random divisors from JK .

If D is such a divisor, then the order of D divides #JK , so
#JK ≡ 0 mod ord(D).
Generating several such D and finding the lcm of their orders will
converge to the group exponent, often (but not always) greater
than w.
But, finding the order of the element corresponds to finding the
least n such that [n]D = id: this is a discrete logarithm problem!
Generic algorithms (such as Baby Step Giant Step) take at best
O(
√

n) group operations to determine an element order n.
Using BSGS, this approach is suitable for q ≈ 1030 for an elliptic
curve.
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Schoof’s algorithm on Elliptic curves

In genus 1, χ takes a particularly simple form, and we need only
determine its trace t, which satisfies

ϕ2
q − [t]ϕq + [q] = [0]

Recall that we can work in the l-torsion subgroup and study χ mod l
instead; then we can test by brute force τ ∈ 1, . . . , l − 1 for

(xq2
, yq2

)⊕ [ql](x, y) = [τ ](xq, yq)

This will give tl for assorted primes l.
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Schoof’s algorithm

Schoof’s algorithm
INPUT: Curve E/Fq

OUTPUT: #E(Fq) the cardinality of E.
1 Compute L a set of primes such that∏

l∈L

l ≥ 4
√

q (1)

with L minimal
2 For each l ∈ L, compute tl, the trace modulo l.
3 By the Chinese Remainder theorem, find tL, the trace

modulo
∏
l∈L

l.

4 Expressing tL as t in the range −2
√

q ≤ t ≤ 2
√

q gives
the true trace.

5 Return q + 1− t.
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Improving step 2?

Schoof’s algorithm is of polynomial time complexity, so practical
in theory.

The intermediate expressions are controlled by working modulo
the lth division polynomial (of degree (l2 − 1)/2) and the curve
equation.
In practice, though, it is still too slow for curve sizes of
cryptographic interest: No use over fields beyond approx 10200

elements, where we’d need l ≈ 250.
Improvements to step 2 by Elkies and Atkin give rise to the SEA
algorithm, this is effective for q ≈ 10500.
Record (November 2006) is p = 102499 + 7131, although this took
over a year to complete!
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Improving step 2

We characterise primes l as either Elkies or Atkin primes:

Definition

If
Fl = u2 − tlu + ql = (u− λ)(u− µ)

then l is an Elkies prime iff λ, µ ∈ Fl.

Of course, if we knew the factorisation, then we’d already know tl!

Definition

For a curve E with j-invariant j and a prime l, the modular polynomial
of order l is the polynomial of degree l + 1 whose roots are the
j-invariants of the curves isogeneous to E such that the kernel of the
isogeny is of size l.

These are hard to compute! But their splitting type tells us whether l
is an Elkies or Atkin prime.
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Elkies and Atkin procedures

Elkies primes

Elkies describes a procedure for replacing the lth division polynomial
with a factor of degree (l − 1)/2; this allows for much faster
computation in practice (despite the same theoretical complexity -
polynomial time - as Schoof). Further, we need only find a
λ ∈ 1, . . . , l − 1 by trial and error such that

(xq, yq) = [λ](x, y)

as then λ is a root of Fl and tl = λ + q/λ mod l.
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Elkies and Atkin procedures

Atkin primes

Atkin gives a separate procedure for finding tl for l a non-Elkies prime:
actually, it gives a set of candidates for tl, which must be tested against
random points once combined with Elkies data. This is of exponential
complexity but is computationally simple and thus often helpful in
practice.
We do this by noting that λ, µ ∈ Fl2\Fl and γr = λ/µ is an element of
known order r in Fl2 ; there are only finitely many possibilities for γr

and thus for tl.
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Higher genus

SEA only works for genus 1 at present.

Modular polynomials for higher genus have been developed, but
there is no equivalent of the Elkies procedure.
The schoof procedure itself is more difficult, since χ, not just its
trace, must be found.
Working with JK [l] becomes increasingly difficult as g grows: e.g.,
need to work modulo an ideal rather than a single division
polynomial.
But hyperelliptic curves give larger rational jacobians relative to q
than elliptic curves, so can work over smaller ground fields yet
achieve comparable cryptographic strength.
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Thanks!

Figure: Point counting in a finite field

Website: http://maths.straylight.co.uk
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