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What is Cryptography?

Cryptography

From Greek kryptos - hidden - and graphos - writing - cryptography is the
use of codes to disguise messages.
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The main challenge in cryptography

Cryptography

How can you communicate securely over an insecure channel?
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Classical Cryptography

The encoding and decoding of messages is at least 2,000 years old- in
Roman times, the Caesar shift cipher was employed.

For instance, with a shift of 4:

Plain a b c d e f g h i j k l m n o p q r s t u v w x y z
Cipher E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

The word “cryptography” would thus become “GVCTSKVETLC”. The
shift number 4 is the “key” to both locking and unlocking the enciphered
message (symmetric encryption).
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Classical Cryptography

Although the encryption/decryption systems became more sophisticated,
until the 20th century, the basic idea remained the same:

The sender converts the message into ciphertext using an encryption
system.

Secret Key + Plaintext −→ Ciphertext

The receiver converts the ciphertext back into plaintext using a
corresponding decryption system.

Secret Key + Ciphertext −→ Plaintext
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Classical Cryptography

Problems with classical cryptography

If an adversary learns the decryption key and system, they can
decipher messages, and thus secrecy is lost.

If an adversary learns the encryption key and system, they can
encipher messages, and thus trust is lost.
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Classical Cryptography

The biggest problem with private key cryptography

In order to share secrets, you must first have shared a secret!
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Public Key Cryptography

The challenge for modern cryptography

Can you establish a secret with a previously uncontacted stranger, without
sharing the same secret with anyone listening in?
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Secret sharing with paint
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Secret sharing with paint
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Secret sharing with paint

The public information is not enough to learn the shared secret, so it
really is a secret unless you know a private colour.

But you can’t unmix paint, so Eve can’t learn a private colour from
the mix and the base.

So Eve can’t learn the shared secret.

The order in which paint is mixed does not matter- so Alice and Bob
reach the same secret result.
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Secret sharing with mathematics

Can we mimic these properties mathematically?

Definition

An injective function is described as a one-way function if, like mixing
paint, it’s easy to compute the output from the inputs, but (practically)
impossible to compute the inputs from the output.

Problem

No one has managed to prove that a one-way function really exists!
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A possible one-way function

Let (G ,⊕) be a finite additive group of order N .

Definition

The scalar multiple [t]g of g ∈ G is

g ⊕ g ⊕ · · · ⊕ g︸ ︷︷ ︸
t copies

So we can consider the map

f : Z/N Z×G → G

f (n, g) = [n]g
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Computing f

Given t, g we can compute h = [t]g in O(log2(t)) group operations by a
fast exponentiation algorithm.

Example (Binary Double-and-add)

Let t have binary digits dkdk−1dk−2 . . . d0. Set T = g .
For i from k − 1 to 0,

If di=0, set T = T ⊕ T .
Else, set T = T ⊕ T ⊕ g .

Then T = [t]g = h as required.
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Computing f

Example (t=83)

83 = (1010011)2 so our sequence is

T = g

d5 = 0, double T = T ⊕ T = [2]g

d4 = 1, double-and-add T = T ⊕ T ⊕ g = [5]g

d3 = 0, double T = T ⊕ T = [10]g

d2 = 0, double T = T ⊕ T = [20]g

d1 = 1, double-and-add T = T ⊕ T ⊕ g = [41]g

d0 = 1, double-and-add T = T ⊕ T ⊕ g = [83]g
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Computing f −1

The reverse of scalar multiplication is the Discrete Logarithm Problem.

Definition (DLP)

Given g , h ∈ G , find t such that [t]g = h.

Theorem (Shoup, ’97)

If A is an algorithm that reads in g , h, performs m group operations and
then returns an answer v ∈ Z/NZ, then the probability that t = v is
O(m2/p), for p the largest prime dividing N.

So for a non-negligible probability of success, A must perform O(
√

p)
group operations.
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DLP Cryptography

If G is a group of prime order p then

Scalar multiplication takes O(k) group operations for k = log2(p).

DLP takes O(
√

p) = O(2k/2) operations- exponentially harder!

The order of scalar multiplications doesn’t matter:
[a]([b]g) = [ab]g = [ba]g = [b]([a]g).

So we can use prime groups to securely generate shared secrets.
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Except... which group?

Shoup’s result assumes no knowledge of the underlying group. But any
implementation requires a group to be chosen, and this may introduce
additional structure that makes the DLP easier.

Example

For Z/pZ with addition modulo p, the DLP is very easy! Just use Euclid’s
algorithm.

Currently fashionable choice is the group of rational points of an elliptic
curve over a finite field, since there is no obvious reduction to Z/pZ.

Graeme Taylor (Edinburgh) Modern Cryptography October 2008 26 / 29



Except... which group?

Shoup’s result assumes no knowledge of the underlying group. But any
implementation requires a group to be chosen, and this may introduce
additional structure that makes the DLP easier.

Example

For Z/pZ with addition modulo p, the DLP is very easy! Just use Euclid’s
algorithm.

Currently fashionable choice is the group of rational points of an elliptic
curve over a finite field, since there is no obvious reduction to Z/pZ.

Graeme Taylor (Edinburgh) Modern Cryptography October 2008 26 / 29



Except... which group?

Shoup’s result assumes no knowledge of the underlying group. But any
implementation requires a group to be chosen, and this may introduce
additional structure that makes the DLP easier.

Example

For Z/pZ with addition modulo p, the DLP is very easy! Just use Euclid’s
algorithm.

Currently fashionable choice is the group of rational points of an elliptic
curve over a finite field, since there is no obvious reduction to Z/pZ.

Graeme Taylor (Edinburgh) Modern Cryptography October 2008 26 / 29



Limitations and open problems

We can’t prove that there are any one-way functions.

If there are, ECDLP might not be one of them.

Even with perfect one-way functions, the protocol might be flawed.

Even with perfect crypto and perfect protocols, implementation may
disclose secrets.

After establishing a secret, we need a classical cryptosystem that’s at
least as secure.
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XLEROCSY JSV PMWXIRMRK!
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THANKYOU FOR LISTENING!
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