Topics in Discrete Mathematics Introduction to Graph Theory

Graeme Taylor

28/i/13

The Seven Bridges of Königsberg

The Seven Bridges of Königsberg

The Seven Bridges of Königsberg

The Seven Edges of Königsberg

Solving the puzzle

- A solution would be a trail of vertices, such that each step between **adjacent** vertices is via a previously unused edge, and every edge is used somewhere along the trail.
- To walk between two vertices such as A and B via another such as C , we require a pair of edges to be **incident** at C one to get there from A , another to continue to B .
- So, apart from perhaps the start and end vertices, each must have an even number of edges incident at it.
- Sadly for the people of Königsberg, all four regions are home to an odd number of bridges.

A (simple) graph G is given by a finite set V of vertices and a set E whose elements are subsets of two (distinct) elements of V , the **edges** of G .

If $e = \{v_i, v_j\} \in E$ then we describe the vertices v_i , v_j as being $\mathsf{adjacent}$, and say that the edge e is $\mathsf{incident}$ at vertices v_i and $v_j,$ its endpoints.

We denote G by $G(V, E)$.

The **degree** $d(v)$ of a vertex v is the number of edges that are incident at v or, equivalently, the number of vertices it is adjacent to.

Lemma (Handshaking Lemma)

For any graph $G = G(V, E)$,

$$
\sum_{v\in V}d(v)=2\times\#E.
$$

Corollary

The total degree of a graph is even.

Corollary

For any graph, the number of vertices with odd degree is even.

A walk is a sequence $v_1, e_1, v_2, e_2, \ldots v_n$ of vertices and edges such that $e_i = \{v_i, v_{i+1}\} \in E$ for all *i*. The length of the walk is $n - 1$, the number of edges used. If the end vertex v_n is the start vertex v_1 , then the walk is **closed**;

otherwise, it is open.

"I travel not to go anywhere, but to go. I travel for travel's sake. The great affair is to move" - Robert Louis Stevenson.

A walk of length 3 from A to D; a walk of length 6 from A to D; a closed walk of length 5 starting at B; and a closed walk $F - G - F$ of length 2.

A graph $G(V, E)$ is **connected** if for every $v, w \in V$ there exists a walk with v as the start vertex and w the end vertex. A disconnected graph consists of a number of connected components, whereby any two vertices in the same component have a walk between them.

A disconnected graph with three connected components.

A trail is a walk that does not reuse any edge (So $|\{e_1, \ldots, e_n\}| = n$. If it is closed, then it is called a **tour**. A trail that uses every edge of G (so each edge appears once and only once in the trail) is described as Eulerian.

Theorem

A connected graph G has an Eulerian **tour** if and only if all vertices have even degree.

We first prove that if there is an Eulerian tour, then every vertex has even degree.

- Let v be a vertex of interest, and start the tour at any $w \neq v$.
- Each time a tour visits v it must reach it via an edge that hasn't been used before, and then leave it by another edge that hasn't been used before.
- To be an Euler tour, every edge incident at v is used precisely once, during some visit to v.
- If the total number of visits to v is x , then $2x$ edges incident to v are used during those visits, and each edge incident to v is one of those edges.
- So $d(v) = 2x$ which is obviously even.

Now suppose every vertex of G has even degree. We will prove by construction that G has an Euler tour T.

- \bullet Pick any vertex v and construct a tour T that starts and ends at v.
- **2** If \overline{T} uses every edge in \overline{G} , it is Eulerian and we are done.
- **3** If not, there are edges of G not in T : consider the subgraph $G' = G \setminus T$. Every vertex of G' has even degree, and there is at least one vertex w in both T and G' .
- $\overline{4}$ Construct a tour T' in G' starting and ending at w, then splice it into T by starting at v, following T until we reach w, then following T' until we return to w, at which point we resume T until arriving back at v .
- $\bar{\phantom a}$ This gives a strictly larger tour $\bar\tau=\bar\tau\cup\bar\tau'$, and strictly smaller $G'=G\backslash (T\cup T')$.
- **6** Then T is either Eulerian or we may return to step 3 and iterate; eventually all edges must be used, and so T must be Eulerian.

Spliced:

Corollary

A graph G has an Eulerian trail if it has either zero or two vertices of odd degree.

- If G has zero vertices of odd degree, it has an Euler tour.
- It cannot have exactly one vertex of odd degree, by handshaking.
- If there are exactly two vertices v_1, v_2 of odd degree, then we may introduce a dummy edge $\{v_1, v_2\}$ to obtain a graph with all vertices of even degree: so it has an Euler tour.
- By starting that tour at v_1 and following it to v_2 along the dummy edge, we can then proceed to visit every edge before returning to v_1 . Thus there is an Euler trail in the original graph G that starts at v_2 and ends at v_1 .
- If there were an Eulerian trail in a graph with at least 3 vertices of odd degree, the same trick would give us an Eulerian tour in a graph with at least 1 vertex of odd degree, which cannot exist.

Recap

- A walk is a sequence $v_1, e_1, v_2, e_2, \ldots v_n$ of vertices and edges such that $e_i = \{v_i, v_{i+1}\} \in E$ for all *i*.
- In a closed walk, $v_1 = v_n$.
- A trail is a walk that does not reuse any edge.
- A tour is a closed walk that does not reuse any edge.
- An **Eulerian** trail/tour uses every edge of a graph.
- There are simple necessary and sufficient conditions for the existence of Eulerian trails/tours; and when they exist, there is an efficient algorithm for constructing them.

What if we want to visit each of the vertices instead?

Definition

A path is a walk that never revisits a vertex- which prevents it revisiting any edge, so it is also a trail.

A cycle is a closed path: that is, it starts and ends at the same vertex, but otherwise has no repeated vertices or edges.

A path or cycle that visits every vertex of G is described as Hamiltonian. G itself is called Hamiltonian if it contains a Hamiltonian cycle.

If there is a Hamiltonian path between every pair of vertices of a graph G, it is called Hamiltonian-connected.

Warning!

The Hamiltonian path problem and Hamiltonian cycle problem may look similar to the Euler trail / tour problems, but are very much harder. Specifically, they are NP-complete.

- It's easy to verify if a given listing of the vertices is a legal Hamiltonian path / cycle;
- But given G, there is no known polynomial-time algorithm to even decide if G contains a Hamiltonian path / cycle - never mind finding one!
- This remains true even if we put some strong restrictions on G.
- But under some conditions, there is always a Hamiltonian cycle:

Theorem (Dirac's Theorem)

Let G be an n-vertex graph, where $n \geq 3$. Then if $d(v) \geq n/2$ for every vertex v of G, then G is Hamiltonian.

Dirac's theorem gives sufficient, but not necessary, conditions for being Hamiltonian.

William Rowan Hamilton's Icosian Game

The graph of possible moves of a knight on an 8×8 chessboard.

It is known that there are 13,267,364,410,532 Hamiltonian cycles on the 8×8 Knight's graph (undirected, but allowing rotation and reflection).

However, the number of Hamiltonian paths on this graph is still an open question!

