Visualisation Of Scottish Demographic Data

My MSc dissertation is available for download here, as a 7.54Mb PDF. Here’s the abstract: This project explores the use of interactive visualisations to augment the extensive data published by the National Records of Scotland. Good visualisation can illustrate key trends in statistical data, increasing impact and accessibility; great visualisation can go further, and enable …

Continue reading ‘Visualisation Of Scottish Demographic Data’ »

My Erdős number…

…appears to be four (an infinite improvement). I coauthored a paper with Gary Greaves, whose recent paper Edge-signed graphs with smallest eigenvalue greater than -2 also saw contributions from Jack Koolen and Akhiro Munemasa. They both have an Erdős number of two (each via Chris Godsil, who is an Erdős coauthor), making Gary a three …

Continue reading ‘My Erdős number…’ »

Recent popular baby names in Scotland

Given my previous anthroponomastical adventures I knew I’d want to play around with the popular names datasets during my project. Whilst I should only be thinking about visualisation rather than analysis, spend enough time compiling values from two dozen Excel files and you’ll inevitably start noticing patterns (even when they aren’t really there). So this …

Continue reading ‘Recent popular baby names in Scotland’ »

DataViz first steps

For the dissertation component of my MSc I’ll be working with the National Records of Scotland on a project entitled Data Visualisation of Scottish Demographic Information. Here’s a first dip into the world of D3, lightly adapted from these examples of chord diagrams. The data shown are Migration flows between Council areas for 2011-12 (most …

Continue reading ‘DataViz first steps’ »

What is a buckyball? Part 3: Fullerenes

In the previous post we saw how we could project polyhedra into the plane, and use some simple properties about planar graphs to classify all the possible Platonic solids. In this post we’ll finally get to the buckyball, by considering a less restrictive class of polyhedra: the fullerenes. The Platonic solids were extremely regular: every …

Continue reading ‘What is a buckyball? Part 3: Fullerenes’ »

What is a Buckyball? Part 2: Projection

How can we represent a 3-dimensional object such a cube in only 2-dimensions, such as on a flat piece of paper? This is the problem of projection, and it inevitably introduces inaccuracies. Different choices of perspective will alter what features survive the projection process. For instance, a perfect cube has all faces square, with corner …

Continue reading ‘What is a Buckyball? Part 2: Projection’ »